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ABSTRACT

Woven ceramic matrix composites such as SiC/SiC are candidate materials for
future hypersonic vehicle systems such as thermal protection systems and aero-
propulsion systems. However, randomness in woven ceramic matrix composite
architecture has been found to cause large variability in stiffness and strength. The
effect of varying architecture on the variability of in-plane tensile strength is studied
using the Brittle Cracking Model for Concrete in the commercial finite element
software, Abaqus. A maximum stress criterion is used to evaluate failure, and the
stiffness of failed elements is gradually degraded such that the energy required to open
a crack (fracture energy) is dissipated during this degradation process. While the
varying architecture did not create variability in the in-plane stiffness, it does
contribute significantly to the variability of in-plane strength as measured by a 0.02%
offset method. Applying spatially random strengths for the constituents did not
contribute to variability in strength as measured by the 0.02% offset. However, if the
strength varies in larger clusters (rather than completely randomly), there are some
variations in strength. While the architecture causes a larger amount of variability than
random constituent strength, the architecture and local constituent strength play a
synergistic role in determining the strength of the composite.

INTRODUCTION
Background

Woven ceramic matrix composites are of current interest for harsh thermo-
structural conditions such as those encountered by hypersonic vehicle systems and
turbine engine components. Randomness in the tow architecture, as well as the
randomly shaped and spaced voids
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that are produced as a result of the manufacturing process, are features that contribute
to variability in stiffness and strength.

ARCHITECTURAL VARIABILITY

The effects of architectural variability have been recognized as important for
understanding how structures fail under various loading conditions [1], [2]. There is a
large body of work with various attempts at capturing the effects of architectural
variability for polymer matrix composites (PMCs) [3]-[5]. Others are working on this
problem for CMCs which may behave quite differently given the differences in
processing techniques [6]-[9]. It is typical to limit the various types of architectural
variability being studied in order to keep the problem tractable. For example, Woo and
Whitcomb [5] studied the effects of tow misalignment and Chang [3] investigated tow
geometry changes as a result of draping. While some limit the amount of variability in
properties studied, early work at NASA included probabilistic analysis of numerous
aspects of variability. Some of these variables included constituent mechanical
properties and strength, volume ratios, and architectural variability such as ply
misalignment [10]. Similar work was done by Desplentere for 3D woven composites
in which detailed X-ray images were used to quantify architectural variability [1].

PROGRESSIVE DAMAGE

When considering the failure and strength of composites, both progressive and
non-progressive damage methods used. Non-progressive methods such as those that
use first element or first ply failure are simple and appropriate for some analyses,
especially in early stages of design (e.g. [11], [12]). However, they do not provide
much insight into the progressive nature of failure. While many methods have been
proposed for modeling the progressive damage and failure in composites, there are
two unifying topics. These include an element or ply discount approach which is
typically stress-based, continuum damage mechanics, and fracture mechanics. Each
has their strengths and limitations, and their usefulness depends on the application.

In the above mentioned methods, analysis begins with a comparison of stress,
either in an element or in a ply, to the strength of the material. The difference lies in
the degradation model. Usually an incremental-iterative technique is used, which
means an iteration is performed at each load or displacement increment, but small
increments in between are also used to ensure stability. Failure criteria are evaluated at
each increment and material properties are degraded by a factor determined by the
analyst if failure is detected. Karkkainen, Sankar, and Tzeng [[13]], as well as many
others make use of this method., Work by authors such as Ochoa and Engblom [14]
and Knight [15], used a process in which, for each load increment the lamina stresses
were checked for failure based on several different failure criteria that were related to
the mode of failure. If the stress in the fiber direction exceeds the allowable stress, the
stiffness in the fiber-direction is degraded. A similar process was completed for a
plane woven composite in work by Blacketter et.al. [16].

Continuum damage mechanics methods also involve checking the failure criteria,
and degrading material properties. However, it is usually done in a way that represents
the physics of the damage occurring. Continuum damage mechanics typically involves
the use of a damage variable which introduces damage by degrading the stiffness



tensor on the basis of a damage law [17], [18]. The way in which the stiffness matrix
is degraded varies, and there is no universal method that is appropriate for all materials
or all applications. The choice of damage evolution may come from experimental data
fitting which limits capabilities in virtual design of a material [19]. However, current
predictive methods typically require some calibration to experiments and have been
shown to work very well. In work by Pineda et al., Schapery Theory which is based on
the energy potential required for structural changes to occur is used [20]. Other models
are based on relationships due to observed cracking or fracture. For example, Talreja
[21] has developed a method in which crack density can be related to damage
evolution.

Another method of determining damage evolution is based on the fracture
mechanics concepts of fracture toughness and strain energy release rate of the material
[22], [23]. This method is valuable for this work because it is derived from
information about material properties (fracture toughness and strain energy release
rate) that can generally be found in the literature. Since it is a popular method, it is also
already implemented in many finite element analysis packages, including Abaqus
which has a model titled Brittle Cracking for Concrete (BCC) [24]. This model is
based on early work that was done for concrete, but it can be applied to brittle
materials in general [25]. It is similar to the model by Barenblatt that used traction
separation laws to define the damage [26]. In the BCC model, elements that are failing
can be thought of as cracks. When the maximum tensile stress is reached, the stress
does not become zero suddenly, but gradually decreases as the crack width increases
(the element length increases). The amount of energy needed to open the crack, and
the way in which the energy dissipates dictates the post-peak softening behavior. This
method also has similarities to cohesive zone modeling [27]. The key advantage
offered by implementing the continuum damage mechanics method over cohesive
zone modeling is that the location of the crack does not need to be known a priori.

Objectives of Current Work

Previous work by the authors demonstrated that modeling the voids is important
when determining the transverse stiffness [28], [29]. The in-plane stiffness properties
were not as sensitive to changes in the architecture and were generally related to the
void volume fraction. The objectives of the work described here are to assess the
amount of variability in the in-plane tensile strength measured by a 0.02% offset
method for three cross sections with varying architecture and begin to understand
which aspects of the model need to include variability. A smaller (or larger) strain
offset can be used, but similar results will be obtained when comparing strengths
relative to one another. The composite can still sustain substantial loads after this
point, but the failure requires inclusion of damage mechanisms such as environmental
effects, which are beyond the scope of this work. The variability in strength due to
architectural variability is compared to the effects of using random strength in the
constituents (a more common variable to randomize). These effects are studied by
using a progressive damage model that allows the observation of damage initiation
and propagation.



DETAILS OF FINITE ELEMENT MODEL AND PROGRESSIVE DAMAGE

It was desired to find a readily available material model which could be used,
along with appropriate assumptions, to evaluate the importance of modeling the
varying architecture and the varying strength of the constituents. There are several
types of damage initiation and evolution models in commercial FE software, e.g.
Abaqus [24]. The majority of them are applicable to metals in which the post-peak
softening behavior is ductile rather than brittle. However, there are a few models
which allow the simulation of brittle behavior. The majority are applicable to
metals in which the post-peak softening behavior is ductile rather than brittle.
However, there are a few models which allow the simulation of brittle behavior.
One is the Brittle Cracking Model for Concrete which uses Rankine (maximum
stress) failure criterion. The material property degradation uses concepts derived
from fracture mechanics which determines the post-peak softening behavior based
on the energy required to open a crack [25]. The model was developed for concrete,
but is found to be applicable to some other brittle materials, also.

Since we are interested in the yield strength and not the ultimate tensile
strength, failure and damage in the longitudinal tows are not modeled. While
ceramics do not typically exhibit a yielding type of behavior, CMCs do, due to the
fiber reinforcements. Several researchers have shown experimentally that in the
region of the stress-strain curve that lead up to yield strength, damage occurs
predominantly in the inter-tow matrix and in the matrix of the tows. Lamon [30]
outlines the failure process in a plain woven CMC as follows. First, cracks initiate
at inter-tow pores (macropores) at strains between 0.025% and 0.12%. Then cracks
begin to form in the transverse tows between strains of 0.12% and 0.2%. Lastly,
cracks are seen in the longitudinal tows for strains larger than 0.2%. The strains at
which these failure modes occur in the SHS SiC/SiC composite are different, due to
the different weave and manufacturing process, but the general evolution of damage
is similar. This is validated by the work of Morscher [31] in which damage was
detected using acoustic emission (AE) techniques on a 5HS CVI SiC/SiC
composite, almost identical to the one studied here. The first AE event occurred at
small strains (less than 0.05%) and corresponded to formation of microcracks. The
large AE event was related to large matrix cracking and crack bridging through the
tows which occurred around a strain of 0.05%. These experimental observations
indicate that if the yield strength is the strength of interest, modeling damage in
matrix and transverse tows is sufficient.

Material Properties

STIFFNESS AND DETERMINISTIC STRENGTH

The Young’s moduli, shear moduli, and Poisson’s ratios of the matrix and
longitudinal tows are the same as that prescribed for the stiffness analysis in Table
1. However, the Brittle Cracking Model in Abaqus can only be used for isotropic
materials. Since the tow properties are transversely isotropic, and they are only
being loaded in the transverse direction, the tows can be modeled as an isotropic



material with properties equal to those of the transverse direction (£ = 106 GPa, v =
0.21).

Strength properties of the constituents are less straight-forward and are not
widely found in the literature. However, one of the objectives of the work is to
determine which characteristics of the model need to be varied in order to capture
variability. Therefore, determining reasonable properties based on experience and
pertinent assumptions with the aid of limited experimental data is appropriate. Note
that discussion of stochastic strength properties follows this discussion.

The first assumption made is that the transverse tows fail because of matrix
cracks. The fibers in the transverse tows do not carry any significant stress when the
loading is in the longitudinal direction. Therefore, the strength of the tows can be
found similarly to the matrix. Then, Morscher observed that in a SHS CVI SiC/SiC
composite, the large acoustic emission occurred at 0.05% strain [31]. At this time,
there were significant cracks in the matrix and transverse tows. We can then assume
that if the local strain is approximately equal to the global strain, then the matrix too
may fail at a strain of approximate 0.05%. We know that the local strain
everywhere is not equal to the global strain, but it is not an unreasonable
approximation.

Figure 1 is a composite model at a global strain of 0.05%. The area marked in
red corresponds to local strains of 0.04% to 0.06%. The blue elements (lower
strains) and grey elements (higher strains) are the only ones outside of this range.
Therefore, we assume that the global failure strain can be related to the local strain.
Then we can use the relationship o, =&,E =0.0005E to determine that the failure

stress of the matrix is 252 MPa and the failure stress of the transverse tows is 53
MPa. The transverse tow strength may seem low. However, if one compares the
value to that of the matrix strength, and considers that the fibers could have a
weakening effect in the transverse direction, the value is not unreasonable. There
are no experimental results to verify the strength, but work by Evans and Zok [32]
also indicate that the result is reasonable. Evans and Zok cite a transverse tow
strength of 10 MPa for another CMC, SiC/CAS (calcium aluminosilicate) [32]. A
summary of the stiffness, strength, and fracture energy properties discussed here
and continued below are found in Table 2.

Figure 1. Finite element model at a global longitudinal strain of 0.05%. The red elements have a
strain of 0.05 £0.01%, while they blue elements and grey elements lie below and above this range,
respectively.



Table 1. Actual constituent material properties

Transverse Tow Longitudinal Tow Matrix
Ey (GPa) 106.0 259.0 420.0
E>(GPa) 259.0 106.0 420.0
E5(GPa) 106.0 106.0 420.0
V2 0.21 0.21 0.17
Vi3 0.21 0.18 0.17
V23 0.18 0.21 0.17
G12(GPa) 414 414 179.5
G3(GPa) 414 42.5 179.5
G2 (GPa) 42.5 414 179.5
a(107%°C) 4.6 4.6 4.7

Table 2. Properties used for the BCC model: Young’s modulus, Poisson’s ratio, strength, strain at
maximum tensile stress, fracture energy, and displacement at failure for the transverse tows and
matrix

Transverse Tow Matrix
E (GPa) 106.0 420.0
v 0.21 0.21
or (MPa) 53.0 252.0
& 0.05% 0.05%
G (N/m?) 21.0 21.0
uy (um) 8.0 1.7

STOCHASTIC STRENGTH OF THE TRANSVERSE TOWS AND MATRIX

Ceramic failure is especially stochastic due to its sensitivity to flaws in the
material. The strength of a ceramic is generally described by a two parameter
Weibull distribution. The parameters are the scale parameter A, and the shape
parameter (frequently referred to as the Weibull modulus) m. These parameters can
be used to determine the mean and standard deviation of the distributions using the
equations

ﬂ:/lr(1+%) (1)

o= \/ AT+ 3) — i’ (2)
m

where I" is the gamma function. Estimations of the Weibull parameters for the
inter-tow matrix and transverse tow matrix were made by Lamon et al. [33], using
finite element analysis that included probabilistic information about the
constituents. The scale parameter and shape parameter for the matrix were found to
be 291 MPa and 4.9, respectively. The scale parameter and shape parameter for the
transverse tow matrix were 120 MPa and 4.9, respectively. For the given values, the
scale parameter has a larger influence on the calculated mean than the shape
parameter whereas the shape parameter has a large influence on the calculated
standard deviation or amount of variability. The purpose of using Lamon’s
estimates is to obtain an approximation for the variability of the composite’s



constituents. The mean strength (approximately 10% lower than Lamon’s mean
strength, mostly due to differences in material volume fractions) has already been
decided by deductions described in the previous section. Therefore, the shape
parameter m from the work cited (m = 4.9) will be used in combination with our
previously determined mean strength. Using Equations 1 and 2, the corresponding
scale parameter of the Weibull distribution and standard deviation can be
determined (see Table 3). A plot of the cumulative distribution function and
probability distribution function are given in Figures 2 and 3 to provide a visual
representation of the variability in strength.
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Figure 2. Cumulative distribution function and probability distribution function plots of the Weibull
distribution of transverse tow strength. The straight blue line and 2 red lines mark the mean and one
standard deviation from the mean, respectively.
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Figure 3. Cumulative distribution function and probability distribution function plots of the Weibull
distribution matrix strength.

Table 3. Weibull parameters of two parameter Weibull distribution and the corresponding mean and
standard deviation

Transverse Tow Matrix
Scale parameter, A (MPa) 58.0 275.0
Shape parameter, m 4.9 4.9
Mean of distribution, u (MPa) 53.0 252.0
Standard deviation, o (MPa) 12.0 59.0

DAMAGE EVOLUTION AND FRACTURE ENERGY

This section explains the physics of the damage evolution after an element
reaches its maximum allowable stress how the fracture energy of the constituents
was selected. The Brittle Cracking Model for Concrete available in Abaqus
combines finite element analysis with fracture mechanics concepts [24], [25].
Abaqus uses a smeared crack approach which means that cracks are not explicitly



modeled, but cracks affect the stress of the element. The crack is formed
perpendicular to the direction of the maximum principal stress.

Hillerborg’s model is illustrated in Figure 4 and described as follows. The crack
propagates when the principal stress at the crack tip is equal to the failure stress of
the constituent (oy). The stress in the element then begins to decrease with
increasing crack opening uc, as illustrated in Figure 5. When u = wu,, the stress is
zero and the element can no longer carry any load. The area under the stress-
displacement curve corresponds to a microcrack zone where there is stress to be
overcome by opening the crack. The energy required to open the crack, or fracture
energy, can then be used to describe how the stress changes with crack opening
displacement, after the failure stress has been reached. The fracture energy can be
written as

G= [ odu 0
0

The shape of the stress-displacement curve is not limited to that of Figure 5. A
curve generated experimentally can be used, or a different assumed post-peak
softening behavior, as appropriate for the application. Since ideally a brittle
material will fail rapidly (such that the stress drops to zero at the ultimate strain or
in other words, there is no gradual softening), a simple linear degradation is
appropriate and Equation 3 can be simplified to

G:%qmu @)

In addition to minimal experimental data being available for strength values,
information about the fracture energy is not readily available either. Given the
relationship of fracture energy to fracture toughness for plane stress and knowing

that the typical fracture toughness for SiC is between 3-5 MPa+/m [34] we can
estimate the fracture energy to be approximately
2 X 6 :
G:&:—(3 10 )9 :21i2 (5)
E  420x10 m
Fracture energy values of 15-25 J/m? have been cited by NIST (National
Institute of Standards and Technology) for SiC, so the above approximation falls
within a reasonable range [35]. The properties cited above are related to a SiC
matrix. Similar properties were not available for the tows. Since the transverse tows
fail due to matrix damage, the same fracture energy was assumed for the tows. Due
to the failure stress of the tows being lower than that of the matrix, the slope of the
post-peak softening behavior will be shallower, implying a larger displacement or
strain to failure. However, the strain to failure is still small.
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Figure 4. Illustration of variables used to describe damage evolution. oy is the maximum allowable
stress, u. is the crack opening displacement, and u, is the crack opening displacement at failure.
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Figure 5. Sample stress-displacement curve illustrating the variables used to describe the damage
evolution. Note that the area under the curve is the fracture energy.

Loads, Boundary Conditions, and Elements

The analysis considered in this study is a uniaxial displacement-controlled
tensile test in the longitudinal direction on a cross section approximately 890 um
long with a thickness of 250 wm. The boundary conditions are illustrated in Figure
6. The right side of the composite (perpendicular to the loading direction) is
prescribed a displacement. The left side is on rollers, free to move in the 3-
direction, but remains straight with respect to the I-direction. The boundary
conditions on the edges parallel to the loading direction are free.

The displacement increments were not uniform for the entire analysis because
of the computational expense. Instead, the first three steps (before damage typically
begins), and last five (after onset of non-linearity) were in increments of 0.5 pm and
0.75 um, respectively. The 23 steps in between were incremented by 0.15 um. The
final total strain of the composite was approximately 1%. Beyond this strain it
becomes important to model damage in the longitudinal tows. Additionally, it is
likely that environmental effects would start to play a major role as cracks have
typically formed on the matrix surface.

The elements used for the strength analysis are a mix of plane stress 4-node
quadrilateral elements and 3-node triangular elements. The plane stress elements
allow the uniaxial tensile test to be simulated (no stress in the 2-direction). A more
complete understanding of the effects of architecture should be obtained by using
3D models in future work.



Figure 6. Boundary conditions for uniaxial tensile displacement-controlled loading

DESCRIPTION OF DAMAGE ANALYSIS CASES AND RESULTS
Effects of Varying Architecture on Strength

The first objective was to assess the impact of varying architecture on the
strength of three different cross sections of the SHS CVI SiC/SiC composite. The
cross sections are taken from micrographs of the composite found in Figure A-1.
The largest difference between the cross sections 1is the size and
distribution/location of voids. The tow properties (tow width, tow height, tow
spacing) have similar statistical distirbutions between each specimen as discussed in
detail in Goldsmith, et al. [29].

The stress-strain curve based on the finite element results is shown in Figure 7
along with an experimental result on a similar, but slightly different material
(different ends per inch used in manufacturing and different fiber volume fraction)
from Morscher et.al. [31]. Therefore the stiffness is higher (due to differing
constituent volume fractions), but the failure characteristics are the same in terms of
when damage is observed, and the global strain in which the stress-strain
relationship becomes nonlinear is also the same. Damage initiates in areas of high
stress concentration in the matrix (near the voids, and between the tows on the
surface, shown in Figure 8, and labeled as Point 1 in Figure 7). This point would
likely correlate to the first acoustic emissions (AE) event discussed by Morscher,
which was an AE event that signaled some degree of damage, but occurred before
an onset of non-linearity in the stress-strain curve [31].

The onset of non-linearity in the stress strain curve begins around a strain of
approximately 0.04%. At this point, damage has initiated in much of the matrix and
the tows, shown in Figure 9 and labeled as Point 2 in Figure 7. Then, at the 0.02%
offset, a significant amount of damage has occurred and many elements have
completely failed, shown in Figure 10 and labeled in Figure 7 with the 0.02% offset
line. Note that the longitudinal tows will always appear undamaged since damage is
not being modeled in those elements. The observations made regarding when and
where failure occurred was similar to those found by Mital et.al. [36]. They also
observed failure initiating near tows and voids. However, they did not observe
variability in the stress-strain behavior for the same cross sections used in this work.
This is likely because progressive failure was not considered and instead the
behavior after failure was perfectly plastic. As the constituents fail, the load-bearing
capabilities decrease, and this plays an important role in the strength of the
composite.

Using a 0.02% yield offset method as discussed previously, the variability in
strength between the three cross sections is approximately 20 MPA or 17%. The
variability in stiffness was approximately 5%. Damage is more dependent on local



phenomena and areas of high stress concentrations can decrease the strength
significantly, especially when the elements lose load-bearing capabilities; whereas
the stiffness involves averaging the stresses which effectively smears the effects of
local phenomena. It is not clear exactly what aspects of the architecture cause the
variability in strength, but for all cases, damage initiates near voids and in between
tows that are close together on the surface.
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Figure 7. Stress-strain curve of three models with varying architecture compared to one
experimental model of a slightly different material. Point 1 corresponds to damage onset. Point 2
corresponds to approximate onset of non-linearity. The 0.02% offset is also labeled. The
experimental result is for a material with a higher initial stiffness [31].
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Figure 8. Zoomed in image of cross section 1 corresponding to damage onset labeled in Figure 7 as
Point 1.
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Figure 9. Image of cross section 1 corresponding to approximate onset of non-linearity labeled in
Figure 7 as Point 2.
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Figure 10. Image of cross section 1 corresponding to 0.02% yield offset labeled in Figure 7 with a
black line

Effects of Varying Constituent Strength on Composite Strength

After varying the architecture, a varying constituent strength was applied. The
strengths were chosen based on the Weibull distributions discussed previously.
Computational limitations prevented each element from having a unique strength.
Instead, each strength was assigned to 75 elements (with 7500 elements, this would
imply 100 different strengths applied to groups of 75 elements). The elements in the
group of 75 were distributed randomly so that 75 elements of the same strength
were not bordering each other. Three different sets of strengths were tested
(distribution of strengths drawn three separate times).

When generating random strengths, the mean of the distribution can vary from
the distribution mean (with 100 samples the sample means will have standard
deviations of about 10% of the distribution standard deviation or about 2.5%, see
Table 3). In order to ensure that variability in the mean strength of the samples, we
rejected samples whose mean strength of one the constituents exceeded £3% of the
distribution mean strengths (252 MPa for the matrix and 53 MPa for the transverse
tows). Two additional deterministic analyses with the strength of the matrix
increased by one standard deviation and decreased by one standard deviation were
completed in order to determine how much of the variability in strength found was
due to the change in the mean or actually due to the variable strength. A 23%
change in the deterministic strength resulted in a 9% change in 0.02% offset
strength. The change in offset strength due to the mean is found by linear
interpolation. Table 4 summarizes the expected change in strength due to the



different mean strength of the distribution, compared to the actual change in
strength.

For each of the three varying strength distributions in the three architectural
models, there was almost no variability in the offset yield strength (less than 0.5%).
The results are plotted in Figures 11-13. With the exception of cross section number
3, the yield strength did not change with respect to using a deterministic strength
either. As indicated by Table 4, cross section 3 is the only cross section that
indicated variability in strength due to the variable distribution (the expected
change in strength due to the mean is smaller than the change in strength found). In
all of the models there are areas of high stress concentration due to the voids.
Failure begins near these points, and eventually occurs, at least to some degree, in
most other areas of the composite. The initiation of damage may happen at a lower
global strain due to an area of lower strength, but when the strain becomes large
enough, a significant amount of failure is going to occur everywhere. It is not yet
clear what causes cross section 3 to have a variation in yield strength. The variation
is low (4%), but it is still higher than the other models. One hypothesis is that
aspects of the architecture lead to more areas with large stress risers and this may
increase the chance that weak elements and high stress concentrations will occur
together as compared to the case in which the strength is deterministic. However, it
is difficult to discern precisely which aspects of the architecture yield higher stress
concentrations. Generally it appears that damage occurs near voids, and when tows
are close together on the surface. Since it is difficult to visualize the concept close
to the yield offset, it is illustrated at a smaller strain. Figure 14 shows cross section
1 with a deterministic strength and the randomly distributed strength. The areas in
which damage initially evolves in the deterministic model are very similar to those
in the randomly distributed strength model, with the exception of 2 spots
highlighted in red. In cross section 3, the areas in which damage evolves are more
numerous than at the equivalent strain in the deterministic model shown in Figure
15. The areas circled in red highlight areas in which elements have completely
failed (or come very close to doing so) in the random model, but not the
deterministic model.

Instead of the strengths being completely randomly distributed, it is also
possible that the local strength manifests in clusters. There is no data to show
whether this is the case, but if it does create some additional changes in the damage,
it may be worth investigating. In order to test the effects of clusters, two models
were used. The first one had 10 clusters of matrix strengths, and the variability in
tows was the same as that applied in the initial models previously described. The
second one had 10 clusters of tow strengths, with randomly varying matrix strength.
The clusters were chosen such that they were layered through the thickness,
numbered with cluster 1 at the bottom and cluster 10 at the top. Cluster 1 and
cluster 5 of the matrix are highlighted in Figure 16. The strength of each cluster can
be found in Table 5.

When the tows were clustered, the yield offset strength still did not change.
However, when the matrix was clustered, the strength increased by approximately
4%. This is not large, but it is worth investigating why this may occur. If we
observe the regions that have failed between the deterministic model, and the
matrix clustered model, we see that for the same applied displacement, damage did
not initiate in at least two major spots. In the deterministic model at the top of



Figure 17, we see that damage occurred near a void at the top and bottom of the
composite, and we can see approximately where a crack would occur through the
thickness. In the clustered model shown at the bottom of Figure 17, damage does
not occur at the same time, or to the same degree. If we look at the strength of the
matrix in those two regions in Table 5 (Cluster 2 and Cluster 9), we see that the
strength is much higher than the deterministic strength of 252 MPa. If in this
clustered model the points near the voids were especially weak, we can imagine that
the amount of damage through the thickness would increase, resulting in a lower
strength. The tows are not as sensitive to the local strength, likely because the
failure of them is less dependent on the stress concentrations cause by the voids.
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Figure 11. Stress-strain curves of cross section 1 with the deterministic strength and three different
sets of strengths drawn from a Weibull distribution
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Figure 12. Stress-strain curves of cross section 2 with the deterministic strength and three different
sets of strengths drawn from a Weibull distribution
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Figurel3. Stress-strain curves of cross section 3 with the deterministic strength and three different
sets of strengths drawn from a Weibull distribution.

Figure 14. Comparison of damaged area in the deterministic and randomized models of cross

section 1



Figure 15. Comparison of damaged area in the deterministic and randomized models of cross
section 3

Figure 16. Model with matrix cluster 1 and matrix cluster 5 highlighted in red. The clusters are
numbered bottom to top

Figure 17. Comparison of randomized model (left) with clustered model (right) in which the
clustered model does not fail near one large top void and one large bottom void due to a higher
strength in that region



Table 4. Expected change in strength (Ac) due to a change in mean, compared to the measured
change in strength when variable strength used

Mean Tow Expected Ac
Mean Matrix Strength due to mean Ac Section Ac Section Ac Section
Strength (MPa)  (MPa) (MPa) 1 (MPa) 2 (MPa) 3 (MPa)
247 54.0 -1.0 0.5 1.0 -6.0
254 53.0 3.0 2.5 2.0 -6.0
252 53.0 0.0 0.0 1.0 -5.0

Table 5. Strength in the clusters for the matrix cluster model and tow cluster model. Note that the
mean and standard deviation of the strength distributions are the same as that of the randomized
model with many clusters

Cluster Matrix Strength (MPa) Tow Strength (MPa)
1 213 65
2 293 46
3 254 55
4 223 66
5 177 59
6 144 50
7 248 64
8 316 45
9 314 62
10 2903 35
Mean 247 55
St.Dev. 58 10
CONCLUSIONS

From these studies, a few valuable conclusions can be drawn. First, the
variability in architecture causes a significant amount of variability in strength
(20% difference in strength between the strongest and weakest cross section),
especially as compared to the stiffness (less than 5%). Strength is more dependent
on local effects than stiffness is, and the voids in the architecture can cause high
local stress concentrations. It is not clear what causes the variation in strength
between the three architectural models, but should be a topic of future study. What
is clear is that variation in the architecture is important to consider.

When the strength is varied randomly throughout the elements of the cross
section FE model, there is not a large effect when using the 0.02% offset yield
strength. However, when the local strength is grouped into large clusters, more
variability in the strength can occur. If there is a region of high stress concentration,
met with a large region of relatively strong elements, the composite’s strength will
be larger than if that area had relatively weak elements. In summary, aspects of the
architecture determine how impactful the given local strength will be on the final
results. While the architecture causes a larger amount of variability than random
constituent strength, the architecture and local constituent strength play a
synergistic role in determining the strength of the composite.



ACKNOWLEDGEMENT

The funding for this work was provided by the NASA Graduate Student
Research Program, grant number NNX10AM49H. The authors are thankful to
Robert Goldberg, Peter Bonacuse, and Subodh Mital of NASA GRC for many
helpful discussions.

REFERENCES

[1] F. Desplentere, S. V. Lomov, D. L. Woerdeman, 1. Verpoest, M. Wevers, and a.
Bogdanovich, “Micro-CT characterization of variability in 3D textile architecture,” Compos.
Sci. Technol., vol. 65, no. 13, pp. 1920-1930, Oct. 2005.

[2] D. C. Charmpis, G. L. Schuéller, and M. F. Pellissetti, “The need for linking micromechanics
of materials with stochastic finite elements: A challenge for materials science,” Comput.
Mater. Sci., vol. 41, no. 1, pp. 27-37, Nov. 2007.

[3] S. H. Chang, M. P. F. Sutcliffe, and S. B. Sharma, “Microscopic investigation of tow
geometry changes in a woven prepreg material during draping and consolidation,” Compos.
Sci. Technol., vol. 64, no. 10-11, pp. 1701-1707, Aug. 2004.

[4] S. V. Lomov, I. Verpoest, T. Peeters, D. Roose, and M. Zako, “Nesting in textile laminates:
geometrical modelling of the laminate,” Compos. Sci. Technol., vol. 63, no. 7, pp. 993-1007,
May 2003.

[5] K. Woo and J. D. Whitcomb, “Effects of fiber tow misalignment on the engineering
properties of plain weave textile composites,” Compos. Struct., vol. 31, no. 314, pp. 343—
355, 1997.

[6] K. C. Liu and S. M. Arnold, “Impact of Material and Architecture Model Parameters on the
Failure of Woven Ceramic Matrix Composites ( CMCs ) Via the Multiscale Generalized
Method of Cells,” NASA/TM-217011, 2011.

[7] P.J. Bonacuse, S. Mital, and R. Goldberg, “Characterization of the As Manufactured
Variability in a CVI SiC/SiC Woven Composite,” in Proceedings of ASME Turbo Expo
2011,2011.

[8] M. P. Rao, M. Pantiuk, and P. G. Charalambides, “Modeling the Geometry of Satin Weave
Fabric Composites,” J. Compos. Mater., vol. 43, no. 1, pp. 19-56, Sep. 2008.

[9] V. Nagpal, M. Tong, P. L. N. Murthy, and S. K. Mital, “Probabilistic Material Sylramic
Woven Modeling Fiber / CVI-SiC of High-Temperature Properties Composite of a 5-
Harness 0/90 Sylramic Fiber/CVI-SiC/MI-SiC Woven Composite,” NASA Tech. Memo., vol.
208497, no. October, 1998.

[10]  C.C. Chamis, “Probabilistic Design of Composite Structures,” NASA/TM 2006-214660,
2006.

[11]  H. Zhu, B. B. Sankar, and R. V. Marrey, “Evaluation of Failure Criteria for Fiber
Composites Using Finite Element Micromechanics,” J. Compos. Mater., vol. 32, no. 8, pp.
766-782, 1998.

[12]  R.Jones, Mechanics of composite materials, 2nd ed. Philadelphia: Taylor & Francis, 1999.

[13]  R.L.Karkkainen, B. V. Sankar, and J. T. Tzeng, “Strength prediction of multi-layer plain
weave textile composites using the direct micromechanics method,” Compos. Part B Eng.,
vol. 38, no. 7-8, pp. 924-932, Oct. 2007.

[14]  O. Ochoa and J. Engblom, “Analysis of progressive failure in composites,” Compos. Sci.
Technol., vol. 28, pp. 87-102, 1987.

[15]  N.F. Knight, “Factors Influencing Progressive Failure Analysis Predictions for Laminated
Composite Structure,” pp. 1-25.

[16] D. Blackketter, D. Walrath, and A. Hansen, “Modeling Damage in a Plain Weave Fabric-
Reinforced Composite Material,” J. Compos. Technol. Res., vol. 15, no. 2, pp. 136-142,
1993.



[17]

[18]
[19]

[20]

(21]
[22]

(23]

[24]

(25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Camus, “Modelling of the mechanical behavior and damage processes of fibrous ceramic
matrix composites : application to a 2-D SiC / SiC,” Int. J. Solids Struct., vol. 37, pp. 919—
942, 2000.

E. J. Barbero and P. Lonetti, “An Inelastic Damage Model for Fiber Reinforced Laminates,”
J. Compos. Mater., vol. 36, no. 8, pp. 941-962, 2002.

A. Puck and H. Schurmann, “Failure analysis of FRP laminates by means of physically
based phenomenological models,” Compos. Sci. Technol., vol. 62, pp. 1633-1662, 2002.

E. J. Pineda, A. M. Waas, B. A. Bednarcyk, and C. S. Collier, “Computational
Implementation of a Thermodynamically Based Work Potential Model For Progressive
Microdamage and Transverse Cracking in Fiber-Reinforced Laminates,” NASA/TM 2012-
217243,2012.

R. Talreja, “Transverse Cracking and Stiffness Reduction in Composite Laminates,” J.
Compos. Mater., vol. 19, no. 4, pp. 355-375, Jan. 1985.

J. a. Nairn, “The Strain Energy Release Rate of Composite Microcracking: A Variational
Approach,” J. Compos. Mater., vol. 23, no. 11, pp. 1106—1129, Nov. 1989.

A.S.D. Wang and F. W. Crossman, “Initiation and Growth of Transverse Cracks and Edge
Delamination in Composite Laminates Part 1. An Energy Method,” J. Compos. Mater., vol.
14, no. 1, pp. 71-87, Jan. 1980.

“ABAQUS Software Package, Ver. 6.8, SIMULIA, Providence, RI.”
http://www.simulia.com/products/abaqus_fea.html.

A. Hillerborg, M. Modeer, and P.-E. Petersson, “Analysis of Crack Formation and Crack
Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr.
Res., vol. 6, pp. 773-782, 1976.

G. 1. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv.
Appl. Mech., vol. 7, pp. 55-129, 1962.

Q. Yang and B. Cox, “Cohesive models for damage evolution in laminated composites,” Int.
J. Fract., vol. 133, no. 2, pp. 107-137, May 2005.

M. B. Goldsmith, B. V. Sankar, R. T. Haftka, and R. K. Goldberg, “Quantifying Effect of
Voids in Woven Ceramic Matrix Composites,” in 54th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, 2013.

M. B. Goldsmith, B. V. Sankar, R. T. Haftka, and R. K. Goldberg, “Effects of
microstructural variability on thermo-mechanical properties of a woven ceramic matrix
composite,” J. Compos. Mater., vol. OnlineFirs, Jan. 2014.

J. Lamon, “A micromechanics-based approach to the mechanical behavior of brittle-matrix
composites,” Compos. Sci. Technol., vol. 61, no. 15, pp. 2259-2272, Nov. 2001.

G. Morscher, M. Singh, J. Kiser, M. Freedman, and R. Bhatt, “Modeling stress-dependent
matrix cracking and stress—strain behavior in 2D woven SiC fiber reinforced CVI SiC
composites,” Compos. Sci. Technol., vol. 67, no. 6, pp. 1009—1017, May 2007.

A. G. Evans and F. W. Zok, “Review The physics and mechanics of fibre-reinforced brittle
matrix composites,” J. Mater. Sci., vol. 29, pp. 3857-3896, 1994.

J. Lamon, B. Thommeret, and C. Percevault, “Probabilistic-statistical Approach to Matrix
Damage and Stress + Strain Behavior of 2-D Woven SiC / SiC Ceramic Matrix
Composites,” J. Eur. Ceram., vol. 18, pp. 1797—1808, 1998.
Http://www.ceramics.nist.gov/srd/summary/fthexsa.htm, “NIST Property Data Summaries
for Hexoloy SA (SiC),” 2001. [Online]. Available:
http://www.ceramics.nist.gov/srd/summary/fthexsa.htm. [Accessed: 01-Jan-2013].
Http://www.ceramics.nist.gov/srd/summary/ftgsic.htm, “NIST Property Data Summaries for
Silicon Carbide (SiC),” 2001. [Online]. Available:
http://www.ceramics.nist.gov/srd/summary/ftgsic.htm. [Accessed: 01-Jan-2013].

S. K. Mital, R. K. Goldberg, and P. J. Bonacuse, “Two-Dimensional Nonlinear Finite
Element Analysis of CMC Microstructures,” Vol. I Aircr. Engine; Ceram. Coal, Biomass
Altern. Fuels; Wind Turbine Technol., pp. 491-496, 2011.



APPENDIX

Cross Section 3

Figure A-1. Images of cross sections used for analysis



